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.4 software package for the analytical solution of Hamiltonians defining perturbed periodic 

motion is described. Features ol the algorithm are reviewed briefly, and options and system 

requirements of the program arc indicated. Finally. Dulling’s equation illustrates a typical run 

in which frequencies through seventh order and solutions through third both exprcsscd in 

terms of canonical variables, and then in terms of the original amplitude-are found in only 

two algorithm steps. (’ I’M Academc rrcs\. lnc 

For some time the first author has been involved in the development of a Lit 
transform technique to solve Hamiltonians describing near-linear periodic systems 
[ 1, 23. If rapid [formal] convergence to a high-order analytic solution is a major 
feature of this method, so, too, arc the accompanying algebraic complexities, which 
soon become overwhelming. Thus, to realize fully the potential of the tcchniquc, 
computer implementation was recommended. and it was decided to devise a 
general-purposel user-oriented routine. 

The results, a package of FORTRAN programs [3] using rational fraction or 
floating point coefficients. and utilizing SAP [4], a subroutine package for the 
algebraic manipulation of Poisson series written in part by the second author, arc 
described in the present paper. To aid in understanding the quadratic transfor- 
mation properties of the program, the basic algorithm is First reviewed briefly. then 
the program itself and its optional features arc detailed. Finally, Dufftng’s equation 
is used as an example illustrating the method and the capabilities of the package. 

* Research supported in part by NSF Grant MCS-8003592 
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1. THE ALGORITHM 

1.1. The Basic Algorithm 

Given a continuous functionf(x, X; rc, E), analytic in the conjugate n-vector coor- 
dinates x and momenta X about rc = 0 and E = 0, and a C” function W(x, X; E), we 
define [l, 5,6] the Lie operator (the Poisson bracket) 

and its iterates 

L’,f= L&L’,- l f), LO,f =.fi 

and thus the Lie transform off under (or generated by) W 

exp(KL,)f= C gL;f: 
i>o . 

It can be shown [l, 61 that, under the coordinate transformation 

(1.1.1) 

an arbitrary function, f (x, X; E), transforms according to the relation 

f *ty, y; K, E) =f (X(Y, y; x, E), WY, y; % E); E) 

= expWwc,,y;eJ f (y, Y; 4; (1.1.2) 

further, the inverse transformation is given by 

f (x, X; % E) =f *(Y(x, X; G E), Y(x, X; K, 8); G E) 

= exp(KL wc,,x;,j)f *(x, X; ~c, 8). (1.1.3) 

The transformation (1.1.1) is canonical and has the appealing feature of giving 
solutions explicitly in terms of all old or all new variables, rather than only 
implicitly as with transformations generated by a classical function of mixed 
variables. Thus the solution can be recovered directly from (l.l.l), obviating the 
inversion necessary with a traditional Hamiltonian approach; furthermore, since 
(1.1.3) expresses the transformed variables entirely in terms of the original ones, it is 
an easy matter to specify initial conditions on the new variables from the conditions 
on the old variables. 

For functions of the form 

H(x, x; E) = H,(x, x; E) + ErnH1(X, x; E), 
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( 1.1.2) can be written 

H* = H,,+d”H, + KL,H,,+ O(K2): (1.1.4) 

thus the choice of W governs the form of the transformed function, particularly its 
lowest order (in K) an observation which forms the basis for application of the 
method detailed below. 

In certain cases, L,,,. x :,., Il,(x, X; E) may bc factored by positive powers of the 
parameter E: 

But if W satisfies the determining equation [2] 

LwHo+ H, = KT “R I . R = O( 1). [ 1.15) 

the transformation (1.1.2) assumes the form [7] 

H* = c 5 Li,,( 1 - i) H,, + exp( KL w)( K’c 
,a<, I! 

YR). (1.1.6) 

W satisfying (1.15) will generally have terms factored by c ‘; but (1.1.6) 
demonstrates that, to O(K’s Y), the transformed function is just H,, itself. 

Various choices of H, and H, in (1.15) result in different forms of transformation 
algorithm (1.1.6); as might be expected of a method operating on several orders of 
perturbation simultaneously, the “efficiency,” measured by counting the number of 
interterm multiplications, varies considerably with the form of specific problem [7]. 
Clearly the attempt to predict a priori the most efficient choice of algorithm is an 
uncertain enterprise, but the final program implements a rudimentary search for the 
one appropriate in a given case. 

Note that this algorithm, (1.1.6), is only applied to functions used to determine 
the generating function in (1.1.5); other functions are still transformed with (1.1.2). 

The final Hamiltonian algorithm, then, consists of the following equations sum- 
marized here for convenience: 

Determining Equation: L,H,,+ H, = KC-~R 

(General) Transformation: f* = exP(KL W) .f 

(Hamiltonian) Transformation: H*= c $1 -i)L’,H, 
r2O . 

+ exp(KL,)(K2c-’ R) 

Inverse Transformation: J‘= exp(KL w).f*. 
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Application of the technique to nonlinear periodic Hamiltonian systems consists 
in first separating the perturbation (terms depending on the angles, x) from that 
part depending only on the actions, X: 

H(x, x; E) = H,( -) x; E) + ErnHl(X, x; E). 

The generating function is then determined from (1.1.5) and the resulting transfor- 
mations carried out using (1.1.6) and, as desired, (1.1.2). Setting K = E” “in 
magnitude” then eliminates the perturbation (see (1.1.4)), and the function reverts 
to one depending on the single small parameter, E. In certain cases a linear com- 
bination of frequencies (or even a single frequency) may be of order greater than 
zero. In this case of linear independence of order q,-i.e., the frequencies, 

m,m_ 0 &Qfj) wi= 
ax, ’ 

are linearly dependent for m = O,..., q - l- 

L,H,=~ wigF 
I 

in the determining equation (1.15) is factored by .sy, so W by spy; but (1.1.6) 
demonstrates that the perturbation is still eliminated to O(K-~E-~) = 2m -4. 

The above describes a typical transformation step. Having calculated the trans- 
formed Hamiltonian to the ultimately desired order using (1.1.6), one can determine 
an entirely new transformation, generated by an appropriate [new] function and 
expanded in powers of the small parameter K* = szm-“, to bring the Hamiltonian 
closer to the desired form. This subsequent step eliminates angles to order 
2(2m - q) - q = 4m - 3q. Iteration of the process results in the quadratic transfor- 
mation for q = 0; degeneracy reduces the speed of transformation somewhat, but it 
is still continually accelerated. The [sequence of] transformations (1.1.1) then give 
the original variables in terms of the final (soluble) ones-i.e., the solution; the 
inverse transformation (1.1.3) can be used to match initial conditions on the new 
variables to those of the original. 

There are several benefits of this approach. Lie transforms admit of easy transfor- 
mation, and the use of a second small parameter, K, measuring the magnitude of the 
present perturbation (as opposed to the original small parameter, E, measuring the 
perturbation at the first step only) also allows easy inversion (1.1.3). In addition to 
the inherent simplicity, greater efficiency might be expected, and this is indeed the 
case for all but the simplest Hamiltonians [a]. 

But independent of the efficiency, there is an additional feature important to 
application: the quadratic property of the transformation itself. Inaccuracies in the 
frequencies limit the time interval over which asymptotic solutions to nonlinearly 
vibrating systems can be expected to be valid, since such errors generate time-fac- 
tored periodic terms producing a “mixed secular” drift of the formal solution away 



QUADRATIC ANALYTICAL SOLUTION 23 

from the “actual” one. Thus it is common practice at the last step in the asymptotic 
solution of a nonlinear problem to select terms giving the frequencies, without 
determining explicitly the highest order of transformation [in which the solution is 
implicit]. So although the solution is known to one order (in the original small 
parameter) less than the frequencies, this solution can be cxpectcd to remain valid 
for times on the order of the reciprocal of the small parameter before the mixed 
secular error begins to encroach on the highest order of solution. But virtually al! 
perturbation techniques arc “linear,” operating on in some sense “con- 
trolling”---only a single order at a time; thus only a single such higher order of fre- 
quencies can bc found, independent of the order to which the solution itself is dctcr- 
mined. Contrast this with the present method, in which multiple orders of the 
Hamiltonian are transformed (or “controlled”), allowing determination at the last 
step of multiple orders of frequency above the accuracy of the [explicit] solution--- a 
number of higher orders which increases with the order to which the solution is 
found. And it is this number to which power the reciprocal of the small paramctcr is 
raised to give the order of time over which the solution can bc cxpccted to remain 
valid. 

2. Trn COMPUTER PROGRAM 

2.1. The Basic Program 

The algorithm described above is implemented through a set of gcncral-purpose 
software packages consisting of a main program driving sclcctcd subroutines in 
SAP [4], a subroutine package written in part by the second author for the 
analytical manipulation of “Poisson scrics”---- series with terms of the form 

(coef) . x:1 . . . X$ . (I,G, + ... +I,,,G,,,). 

These are available in three versions, in which the coefficients are cithcr rational 
fractions, double precision numbers, or “extended precision rational fractions.” (In 
the last, both numerator and denominator are extended precision floating point 
numbers. Integer-like arithmetic is simulated by limiting the results of rational frac- 
tion calculations to numbers which can be expressed exactly with this variable type 
The maximum absolute value of any integer in this [IBM] representation is 
2’12 - 1, corresponding to integers of 33 significant places. A result larger than this 
halts execution.) 

The package requires, as its minimum input, the definition of the relevant 
algebraic (“parametric”) variables the small parameter, action variables, and any 
others appropriate to the specific problem-and the trigonometric canonical angle 
variables; this, along with the identification of any fractional exponents for the 
parametric variables, initializes the algebraic manipulation package. Also required 
are the starting Hamiltonian (the floating point version of the program allows for 
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TABLE I 

Program Options 

“E(VALUATE)“: Evaluates parametric variables in starting Hamiltonian. 

“T(RANSFORMATION)“: Gives coordinates in new variables (solutions). 

“F(ULL TRANSFORMATION)“: Calculates solutions to maximum accuracy. 

“I(NVERT)“: Finds inverse transformations of variables and frequencies (to match initial conditions). 

“M(INIMUM ELIMINATION)“: Disables search for greater-than-expected elimination. 

“R(ESONANCE)“: Overrides O-denominator test in GENFUN; retains resonant terms in Hamiltonian 
and calculates degeneracy at each order. 

“S(OLUTIONS)“: Calls user-defined subroutines to initialize, manipulate, solutions. 

“G(ENERATING FUNCTION)“: Prints each generating function. 

“O(VERRIDE)“: Overrides GENFUN test checking elimination 

“P(OISSON COUNT)“: Counts Poisson brackets, multiplications. 

“C(HANGE TOLERANCE)“:” Sets new floating point tolerance from default 10-‘3. 

“A(LL ROUNDOFF TERMS ELIMINATED)“? Prints all terms ignored in GENFUN test; measures 
roundoff. 

a Floating point program only. 

either double precision or rational fraction coefficients on input) and the order to 
which the frequencies are desired. Minimum output consists of the transformed 
Hamiltonian and frequency expressions at each step, as well as the final 
Hamiltonian. 

The program allows a selection of additional independent options, controlled by 
key letters on data cards added after the basic input; these are listed in Table I. 
(“GENFUN” refers to the subroutine which calculates and checks the generating 
function.) 

At present there is one restriction on the input Hamiltonians, due to the fact that 
the current algebra program cannot treat series as denominators. Each term of the 
generating function has a linear combination of the frequencies-which are 
generally power series (in the original small parameter)-in its denominator. Thus 
the program finds the reciprocal of this quantity in a binomial expansion using a 
subroutine in the algebra package. But as implemented there (and again to avoid 
division by series), this procedure requires that the highest-order term of each 
denominator consists of a single term. If this condition is violated, the program 
halts. 

For details of the technical considerations in implementation of the algorithm, 
see [S]. One point which might be mentioned, however, deals with internal checks 
on the transformation itself: at each step the generating function is substituted into 
the determining equation to ascertain it is satisfied; the Hamiltonian is then trans- 
formed independently and the predicted elimination verified. The extra time required 
is justified by the desire to maintain the integrity of the program package. 
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2.2. System Requirements 

Both versions of the program have been implemented on three systems: the IBM 
370/168 at the University of Notre Dame, the Amdahl 470-V7 at the University of 
Cincinnati, and the PDP 1 l/70 at the Rose-Hulman Institute of Technology (which 
served the campus while the first author was there). The former default to 4-byte 
integer values and have 16-byte entended precision capabilities; memory is a secon- 
dary consideration, and the program can deal with up to 30,000 individual terms 
allocated among the various series (Hamiltonian, generating function, transformed 
variables, etc.) The PDP 1 l/70, however, was exceptionally stringent in its memory 
requirements, due primarily to the [RSTS V7.0-071 operating system’s maximum 
program size of 27K 16-bit words; in addition, the FORTRAN-IV [V2.5] 
implementation there admitted of only 2-byte integer and 8-byte floating point 
variables. Despite the space limitations, the use of I-byte integer values for certain 
variables, and space and buffer optimization in compilation, allowed approximately 
500 terms (slightly fewer in the floating point version) to be stored. Experience has 
indicated that, even were the PDP FORTRAN-PLUS (which implements 4-byte 
integers and 16-byte double precision) available at Rose, the extra storage required 
for such variables would not warrant their use: the modest memory available balan- 
ced well, with the rate at which integer overflow occurs in the rational fraction ver- 
sion on the one hand, and with roundoff error in the double precision program on 
the other. 

3. EXAMPLE DUFFING’S EQL-ATIOX 

Dufling’s equation is a simple nondegeneratc system with one degree of freedom: 

H(Q,P;c)=coP+c ~~--;~cosZQ+~~cos4Q 
> 

(3.0.: ) 

The input is in Hamiltonian form, but in this case it was decided to express the out- 
put in terms of the unperturbed amplitude of vibration. This could not be done 
with a simple transformation, since the original amplitude had to be identified with 
the coefficient of a particular trigonometric term in the solution. Thus the 
“solution” option was used to initialize a new set of variables and to perform a 
Lagrange inversion of the amplitude at each step. No dislocation of the original 
routine was required to do this; the desired operations were merely programmed to 
be called (by this option) at the already-provided entry points in the main program. 

The results, giving the solution and frequency in terms of the [third-order] 
amplitude of unperturbed oscillation, u, are 

Solution = u sin H -c & (sin 38) + E’ ~ lx5 (21 
1024~~ 

sin 30 + sin 58) 

a7 
- c’~ (417 sin 36, + 43 sin 58 + sin 70) 

32680” 
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2 4 123a6 
Frequency=~++-s2$+s3- 

81920’ 

921a’ 
- E4 2621440~ 

5 4593249a” 
+ as 33554432~~ 

The job was initially run with the standard rational fraction version of the 
program, but 4-byte integer overflow occurred in the seventh order of the Lagrange 
inversion of the frequency (though not in the frequency or solution expressed in the 
original canonical variables). Thus it was decided to use the extended precision 
rational fraction routine. The entire job took 19 seconds on the IBM 370-a factor 
of 44 times longer than with the standard rational fraction version. It is significant 
that three-quarters of the run time was involved with the Lagrange inversion; the 
purely canonical part of the program-which completed successfully using the 4- 
byte rational fraction version, recall-took less than 6 seconds with the extended 
precision variables, and less than 14 seconds with the standard program. It should 
be noted that the Lagrange inversion would have been a necessary part of solution 
had Lie transformations not been used. (For sake of comparison, the same program 
run on the PDP 11/70---it had to be done using the double precision version, due 
to 2-byte integer overflow in the rational fraction version-took about 15 times 
longer.) 

4. CONCLUSION 

This paper has described in some detail an algorithm for the quadratic analytical 
solution of Hamiltonian systems and a computer program implementing it. Copies 
are available by contacting either of the authors. 

Several extensions of the basic program are planned. 0ne follows a suggestion of 
Dr. Andre Deprit and would forestall the effects of floating point roundoff error by 
calculating solutions in rational fraction coefficients until integer overflow occurs; 
the results of he previous successfully completed step would then be stored 
automatically for input to the double precision routine. Another attempts to over- 
come the central memory limitation (which would become critical going to high 
orders) by utilizing temporary disc storage for all series not currently being 
manipulated. While continual disc access would be expected to increase run time 
significantly, it would allow essentially the entire memory allocation to be devoted 
to operations on the present series. 

Although the program is designed to be of use on its own, it is also intended to 
serve as a tool to investigate accelerated perturbation techniques in general. In par- 
ticular, the “Poisson count” option (Section 2.1), giving a running total of separate 
term-by-term multiplications at each step, indicates a substantial saving in “real 
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effort” over linear algorithms [7]. As mentioned above. reducing this number of 
multiplications also reduces the memory required to carry them out, suggesting the 
possibility of obtaining solutions to a higher accuracy (before exceeding memory 
limitations) than previously possible with linear methods. 

Although major devclopmen~ of this program by the first author was done under NSI-’ Grant MCS- 
8003592. initial phases acrc carried out with the encouragement and support of the Rose-Hulman 
Institute of Technology. Terre liaute, Indiana, during his appointment there in the Dcpartmcnt of 
Mechanical Engineering. Hc acknowledges both sources gratefully. The authors arc also indebted 10 Dr. 
Andri: Deprit of the National Bureau of Standards for his many helpful comments and suggestmns. as 
well as IO Dr. Allen Jupp of the Ilniversity of I.iverpool for his. 
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